Accessing BETYdb via ArcMap and other GIS software
Interested researchers can access BETYdb directly from GIS software such as ESRI ArcMap and QGIS. In some cases direct access can simplify the use of spatial data in BETYdb data, but this convenience must be weighed against a more complex setup, limits of GIS software compatibility, and additional complexity of extracting data from a PostGIS SQL database.
Overview
Accessing the production BETYdb used by the TERRA REF program requires creating a secure shell tunnel (SSH) to a remote server. After creating the tunnel, the database is accessed as if it were available on the local machine. A step-by-step process is given below.
Configuration used for these instructions
ArcMap 10.3 or later (Requires Windows operating system)
Instructions for using QGIS and other GIS software are provided below
PuTTY: ssh client for Windows that can be downloaded here: PuTTY
Setup
Request Access
Request access to the BETYdb server by following the link. This will take you to the NCSA identity service. If you do not have an NCSA account, you will be asked to create one. This account and password will be used to login to the database server. Access will generally be granted within 24-hours.
Confirm Access
Use PuTTY or your preferred SSH client and your NCSA account. First open the terminal and then login to bety6.ncsa.illinois.edu using ssh from the command line:
After confirming access to bety6 logout by typing exit
.
Create SSH Tunnel to BETYdb
The following command will create an SSH tunnel
from your computer to the BETYdb server:
Note if have a postgres running on your desktop computer (using the default port 5432), you will need to stop it first.
The above will bind the local port 5432 (first parameter) to port 5432 (second parameter), the default Postgres listening port, on the remote server. All traffic bound for port 5432 on your local machine will be automatically forwarded to the remote server. As a result, programs such as ArcGIS running on your computer will connect to the remote BETYdb as if it were on your computer.
Note you will need to create the SSH connection with the tunnel every time you wish to access BETYdb from your local machine.
To keep the tunnel open, use
note for PuTTY Users: you can configure Putty to remember these settings. In the navigation tree on the left-hand side, click Connection > SSH > Tunnels. Enter '5432' under Source port and 'localhost:5432' in the Destination field. Then click session and save this configuration for future use.
The next section of the guide will discuss accessing BETYdb using ArcMap, querying plots and joining these to the traits and experiments tables. The instructions for setting up a SSH tunnel will also work psql, pgAdmin3, QGIS, and other clients. Instructions for connecting via QGIS and ArcGIS Pro are provided below.
Using ArcMAP
Add BETYdb Layer or Table to ArcMap
BETYdb is configured with PostGIS geometry support. This allows ArcGIS Desktop clients to access geometry layers stored within BETYdb.
Warning: ArcGIS releases prior to 10.3 required you to place the PostgreSQL libpq files in the ArcGIS client's bin directory. This is no longer required for the ArcGIS Desktop clients but some ESRI tools may still require the library be installed.*
Click on the ArcCatalog icon (on right edge of ArcMap window) to open the ArcCatalog Tree
In the tree, click on 'Database Connections' and then "Add Database Connnections". A Database Connection dialog window will open.
Within the dialog box:
Click OK
The connection will be saved as "Connection to localhost.sde", right
click and rename to it to "TERRA REF BETYdb trait database" to allow easy reuse.
Click on the Add Layer icon (black cross over yellow diamand) button to open the Add Data dialog window.
Under 'Look in' on the second line choose 'Database Connections'.
Select the "TERRA REF BETYdb trait database" that created above
Select the bety.public.sites table and click 'Add'.
This 'sites' table is the only table in the database with a geospatial 'geometry' data type.
Any of the other tables can also be added, as described below.
The New Query Layer dialog will be displayed asking for the Unique Identifier Field for the layer. For the bety.public.sites table, the unique identifier is the "sitename" field.
Click Finish.
Warning: ArcMap does not support the big integer format used by BETYdb as primary keys and those fields will not be visible or available for selection. In most cases you should be able to use other fields as unique identifiers.*
Modifying the Query Layer
BETYdb contains one geometry table called betydb.public.sites containing the boundaries for each plot. Because the plot boundaries can change each season, and even within season, different plot definitions may be used (e.g. to subset plots or exclude boundary rows), there is significant overlap that can cause confusion when displayed. In general, you will want to use the query layer to limit plots to a single season and a single definition.
Right click the bety.public.sites layer and choose properties.
Choose the Definition Query tab
Add the line
sitename LIKE 'MAC Field Scanner Season 1%'
orsitename LIKE 'MAC Field Scanner Season 2%'
to limit the layer to Season 1 or Season 2 respectively.Click 'OK'
For more advanced selection of sites by experiment or season, you can join the experiments
and experiments_sites
tables. This is beyond the scope of the present tutorial.
Joining Additional BETYdb Tables
Additional tables can be added and joined to the sites table. Tables can be added just like any other layer. In this case, we'll add bety.public.traits_and_yields_view and join it to the bety.public.sites layer.
To create a join with other tables, start by adding the desired table.
Follow instructions above to add the bety.public.traits_and_yields_view
On this table the unique identifier is a group of columns, so select sitename, cultivar, scientificname, trait, date, entity, and method as the unique identifiers.
Right click on the bety.public.sites layer.
Under 'Joins and Relates' select 'Join'.
Choose sitename (from bety.public.sites) in part 1
Choose bety.public.traits_and_yields_view in part 2
Choose sitename in part 3
Click OK
Creating a Thematic View
The final section describes how to create a thematic view of the bety.public.sites layer based on the mean attribute where the trait is NDVI from the bety.public.traits_and_yields_view. Remove any previous joins from bety.public.sites (right click bety.public.sites --> joins and relates --> remove join) prior to performing this procedure because we will be selecting the NDVI data by creating a query layer from bety.public.traits_and_yields_view prior to the join.
Right click bety.public_traits_and_yields_view table and select properties
Click on the Definition Query tab
Add the line "trait = 'NDVI'" to the Definition Query box
Click OK
Follow the steps defined in Joining Additional BETYdb Tables
Right click on the bety.sites layer and choose properties
Choose the Symbology tab
Under the Show section, choose Quantities --> Graduated Colors
Under the Fields Value selection choose mean
Click OK
Connecting to Other GIS Software
Below connection instructions assume an SSH tunnel exists.
ArcGIS Pro
This assumes you have followed instructions for ArcMAP to create a database connection file.
Open ArcCatalog
Under database connections, you will find the connection made above, called 'TERRA REF BETYdb.sde'
right click this and select 'properties'
copy the file path (it should look like
C:\Users\<USER NAME>\AppData\Roaming\ESRI\Desktop10.4\ArcCatalog\TERRA REF BETYdb.sde
Open ArcGIS Pro
Under the Insert tab, select connections --> 'add database'
paste the path to 'TERRA REF BETYdb.sde' in the directory navigation bar
select 'TERRA REF BETYdb.sde'
QGIS
Open QGIS
In left 'browser panel', right-click the PostGIS icon
select 'New Connection'
Enter connection properties
Name: TERRA REF BETYdb trait database
Service: blank
Host: localhost
Port: 5432
Database: bety
SSL mode: disable
Username: viewer
Password: DelchevskoOro
Options: select 'Also list tables with no geometry'
How to export plots from PostGIS as a Shapefile
This does not require GIS software other than the PostGIS traits database. While connecting directly to the database within GIS software is handy, it is also straightforward to export Shapefiles.
After you have connected via ssh to the PostGIS server, the pgsql2shp
function is available and can be used to dump out all of the plot and site definitions (names and geometries) thus:
Last updated